The Imaging of Dynamic Multiphase Fluid Flow Using Synchrotron-Based X-ray Microtomography at Reservoir Conditions
نویسندگان
چکیده
Fast synchrotron-basedX-raymicrotomographywas used to image the injection of super-critical CO2 under subsurface conditions into a brine-saturated carbonate sample at the pore-scale with a voxel size of 3.64μm and a temporal resolution of 45s. Capillary pressure wasmeasured from the images by finding the curvature of terminal menisci of both connected and disconnected CO2 clusters. We provide an analysis of three individual dynamic drainage events at elevated temperatures and pressures on the tens of seconds timescale, showing nonlocal interface recession due to capillary pressure change, and both local and distal (non-local) snap-off. The measured capillary pressure change is not sufficient to explain snap-off in this system, as the disconnected CO2 has a much lower capillary pressure than the connected CO2 both before and after the event. Disconnected regions instead preserve extremely low dynamic capillary pressures generated during the event. Snap-off due to these dynamic effects is not only controlled by the pore topography and throat radius, but also by the local fluid arrangement. Whereas disconnected fluid configurations produced by local snap-off were rapidly reconnected with the connected CO2 region, distal snap-off produced much more long-lasting fluid configurations, showing that dynamic forces can have a persistent impact on the pattern and sequence of drainage events.
منابع مشابه
Study of Two Phase Fluid Flow in Water Wet Reservoir Rocks by Using X-Ray In situ Saturation Monitoring
Displacement of oil and water in porous media of reservoir rocks is described by relative permeability curves, which are important input data for reservoir performance simulation and drive mechanism studies. Many core studies, such as multiphase relative permeability, capillary pressure and saturation exponent determination, depend on the volume fractions of multiphase flui...
متن کاملDirect Hydrodynamic Simulation of Multiphase Flow in Porous Rock
We present various numerical studies conducted with a novel pore-scale simulation technology called Direct Hydrodynamic (DHD) Simulation that can be used to study multiphase flow at various scales ranging from individual pore-scale events to complex scenarios like capillary de-saturation and relative permeability of digitized rock samples. DHD uses a diffuse interface description for fluid-flui...
متن کاملMicrotomography and Pore-Scale Modeling of Two-Phase Fluid Distribution
Synchrotron-based X-ray microtomography (micro CT) at the Advanced Light Source (ALS) line 8.3.2 at the Lawrence Berkeley National Laboratory produces threedimensional micron-scale-resolution digital images of the pore space of the reservoir rock along with the spacial distribution of the fluids. Pore-scale visualization of carbon dioxide flooding experiments performed at a reservoir pressure d...
متن کاملA low-cost X-ray-transparent experimental cell for synchrotron-based X-ray microtomography studies under geological reservoir conditions.
A new modular X-ray-transparent experimental cell enables tomographic investigations of fluid rock interaction under natural reservoir conditions (confining pressure up to 20 MPa, pore fluid pressure up to 15 MPa, temperature ranging from 296 to 473 K). The portable cell can be used at synchrotron radiation sources that deliver a minimum X-ray flux density of 10(9) photons mm(-2) s(-1) in the e...
متن کاملDynamic fluid connectivity during steady-state multiphase flow in a sandstone.
The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N2 and brine through a permeable sandstone at subs...
متن کامل